Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models
نویسندگان
چکیده
We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16 % and EP by 7–18 %. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. Community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.
منابع مشابه
Interactive comment on “Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models” by W. Fu et al
متن کامل
Interactive comment on “Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models” by W. Fu et al
(2015) and Bopp et al. (2013) examined the same group of CMIP 5 ocean biogeochemical models as this work. We feel this work strongly complements these two excellent papers. Bopp et al. (2013; and to some extent Cabre et al., 2015) focus more on model-mean responses, and model trends normalized to 1990s values, emphasizing similarities in the model responses to climate change. Cabre et al. (2015...
متن کاملNet Primary production changes affected by climate fluctuations (Case study: Qazvin plain)
Vegetation changes can change the rainfall and temperature cycle and also climate fluctuations, especially temperature and precipitation parameters, have significant effects on vegetation. Climate change causes restriction for plant activities which cause changes in vegetation indices including NPP. Considering that Qazvin plain has been affected by climate fluctuations and drought in recent ye...
متن کاملInvestigating the Effects of Teleconnection Indices on Net Primary Production in the North of Iran’s Alborz Mountains
One of the main scientific topics on the effects of global climate change is to assess changes in the carbon cycle in rangelands. Net Primary Production (NPP) is an important component of this cycle, in terms of carbon storage, and a key indicator for assessing the ecosystem function. This research aimed to investigate the correlation between NPP and ocean-atmospheric oscillations, monthly and ...
متن کاملClimate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models
Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability i...
متن کامل